Modulation of protein-surface interactions on nanopatterned polymer films.

نویسندگان

  • K H Aaron Lau
  • Joona Bang
  • Craig J Hawker
  • Dong Ha Kim
  • Wolfgang Knoll
چکیده

The introduction of nanoscale features brings with it a high density of surface interface boundaries and effectively introduces an additional boundary material that exhibits properties different from the surrounding surfaces. We systematically varied the feature size of self-assembled polystyrene-block-poly(methyl methacrylate) copolymer nanopatterns from 13 to 200 nm and demonstrated that the basic property of protein adsorption on a nanopatterned surface can be modulated by the length density of surface interfaces present. Protein adsorption on the nanopatterns could be described by a modified adsorption affinity along the surface interface with an effective width on the length-scale of individual proteins. Due to the intrinsic high density of surface interfaces in many polymeric thin film nanopatterns and structures, the interaction of proteins with such interfaces may be of particular relevance to cell-surface studies and to biomaterial and biosensor applications involving nanoscale features.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anisotropic, hierarchical surface patterns via surface wrinkling of nanopatterned polymer films.

By combining surface wrinkling and nanopatterned polymer films, we create anisotropic, hierarchical surfaces whose larger length-scale (wrinkling wavelength) depends intimately on the geometry and orientation of the smaller length-scale (nanopattern). We systematically vary the pattern pitch, pattern height, and residual layer thickness to ascertain the dependence of the wrinkling wavelength on...

متن کامل

Polymer brushes on periodically nanopatterned surfaces.

Structural properties of polymer brushes tethered on a periodically nanopatterned substrate are investigated by computer simulations. The substrate consists of an alternating succession of two different types of equal-width parallel stripes, and the polymers are end-tethered selectively on every second stripe. Three distinct morphologies of the nanopatterned brush have been identified, and thei...

متن کامل

Nanopatterned Protein Films Directed by Ionic Complexation with Water-Soluble Diblock Copolymers.

The use of ionic interactions to direct both protein templating and block copolymer self-assembly into nanopatterned films with only aqueous processing conditions is demonstrated using block copolymers containing both thermally responsive and pH responsive blocks. Controlled reversible addition-fragmentation chain-transfer (RAFT) polymerization is employed to synthesize poly(N-isopropylacrylami...

متن کامل

Shear modulation force microscopy study of near surface glass transition temperatures

We report results of glass transition (T(g)) measurements for polymer thin films using atomic force microscopy (AFM). The AFM mode, shear modulation force microscopy (SMFM), involves measuring the temperature-dependent shear force on a tip modulated parallel to the sample surface. Using this method we have measured the surface T(g) of thin (17-500 nm) polymer films and found that T(g) is indepe...

متن کامل

Effect of Three Operating Variables on Degradation of Direct Blue 199 by TiO2 Immobilized into a Polymer surface: Response Surface Methodology

This work aims to study the photodegradation of Direct Blue 199 dye. The investigation was performed using titanium dioxide-based films immobilized on a polymethyl methacrylate (PMMA) polymer, by a promising low coast technique. The characterization of the films by X-ray diffractometry, fourier transform infrared spectroscopy, scanning electron microscopy, UV-Visible transmittance, and fluo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomacromolecules

دوره 10 5  شماره 

صفحات  -

تاریخ انتشار 2009